Review of the Physics of Mammography

Charles R Wilson, Ph.D., FACR, FAAPM Medical College of Wisconsin

Milestones in Mammography

1913

- A. Solomon, a Berlin pathologist, images 3,000 gross mastectomy specimens.
- Observed micro-calcifications in breast carcinomas.

1930

 S. Warren described a stereoscopic system using double emulsion film with screens, 70 kVp.

1938

- J. Gershon-Cohen published on radiographic appearance of the normal breast with age.
- Concluded that improvement in technique was needed for clinical use.

1960

R. Egan develops low kVp mammography technique

Robert Egan's Technique – 1960's

- Low kVp technique
 - verified kVp using a 15 mm Al wedge
- Beryllium window x-ray tube with minimum filtration
- Space charge limitations resulted in long exposure times, ~6 seconds
- Long SID: reduce focal spot blurring and provide adequate field coverage
- Metal extension cones: no field light
- Fine-grain industrial film
- No grid

Mammography Positioning – circa 1960

Mammography Positioning – Current

Mammograms: 1975 and Current

With permission: Breast Imaging: From 1965 to the Present E.Sickles, Radiology 215:1 2000.

Mammograms: 1960's vs Current

Milestones in Mammography

1963

- First randomized trial of screening, HIP of NY
- ~30% reduction in mortality in screened cohort
- **1**966
 - J Wolf explores use of xeroradiography
- 1970's
 - Breast Cancer Detection Demonstration Project
 - Xerography, radiography, thermography, physical exam
- **1**986
 - ACR Voluntary Mammography Accreditation Program
- **1**992
 - Mammography Quality Standards Act

First Dedicated Mammography Unit

1965

- Charles Gros, MD, Strasbourg, FR
- CGR Senographe (Breast in French is Sein)
- Very popular unit by 1970, 2000 were installed world-wide

With permission: Short History of Mammography: A Belgian Perspective, A. Van Steen, R. Van Triggelen, JBR-BTR, 2007.

Dedicated Mammography Units

1973
Picker (Mammorex),
Siemens (Mammomat)
Philips (Diagnost)
1974
GE (MMX)

Current Dedicated Mammography Unit

- Gantry mounted x-ray and detector assemblies
- X-ray tube target/filtration and focal spot appropriate for mammography
- Compression device
- AEC
- Film/screen and grid designed for mammography
- Dedicated film processor

Pathognomonic Signs of Breast Cancer Small Details With Inherent Low Subject Contrast

- Masses
 - spiculated
 - shape and margins are important
- Micro-calcifications
 - 100 to 300 microns
 - shape and distribution important
- Others
 - Asymmetric densities
 - Architectural distortions

X-Ray Spectrum Shaping

X-ray spectral shaping is needed to enhance visibility of the inherently low contrast pathognomonic signs

Egan

tungsten tube, low kVp, beryllium window tube with minimal aluminum filtration

Gros (CGR)

molybdenum target and molybdenum filter

Effect of Spectrum on Subject Contrast

Tungsten and Al filter

Molybdenum target and filter

With permission: A Categorical Course in Physics Technical Aspects of Breast Imaging, M Yaffe, et al.,RSNA 1993

Unfiltered Bremsstrahlung Spectrum

Spectral Shaping – K edge filtration

Linear Attenuation Coefficient, Mo filter 2.0 1.5 1.0 0.5 0.5 0.0 5 10 15 20 25 30Energy (keV)

Mo target: 26 kVp and 0.030 mm Mo filter 0.03 mm Mo 10 5 10 5 10 15 20 25 30 Energy, keV Slide adapted from J.A. Seibert

Target-Filter Recommendations

Fatty breast up to ~ 4 cm thick Mo target and 30 micron Mo filter ■ 24 – 26 kVp Glandular breast ~ 5 to 7 cm Mo target and 25 micron Rh filter ■ 27 – 31 kVp Breast thickness > 7 cm Rh target and 25 micron Rh filter

Slide courtesy of J.A. Seibert

Heel Effect

Cathode ----- Anode Axis

100%

0%

Cathode

Anode

ntensity

 Large target angle is needed, > 20⁰, for full field coverage

Projected focal spot size improves as well

X-Ray Tubes Conventional Mammography

- glass envelope
- tungsten anode
- anode angle $\sim 7^{\circ}$ to 16°
- axis of rotation horizontal
- Al filter for dose reduction

- metal tube housing
- grounded Mo, Rh anode
- anode angle 0^o tube tilt of 26^o
- axis of rotation ~ vertical
- Mo or Rh filters for spectral shaping

Mammography X-Ray Tube

Dual Target X-ray Tube

Anode angle 0⁰ Tube angled at 26⁰ Large and small filaments for each track. Four focal spots.

> ¥. *

Cathode

Mo track

Pin hole image of focal spots.

Siemens Opdose 26⁰ anode angle

W or Mo target

Mo or Rh (tilted) filter

Medium/High Frequency Generators

- 1984 Lorad introduced a high frequency generator mammography unit
- 60 Hz is rectified, smoothed, chopped to a frequency
 6 kHz or higher
- transformer efficiency is greater at higher frequencies thus smaller in size
- less ripple better beam quality and increased output

Breast Compression

- 1949 R. Leborgne, Uruguanian radiologist first uses breast compression
- By 1970's compression devices common on dedicated mammography units

Raul Leborgne, MD

Evolution of Compression

Breast Compression Improves Contrast and Conspicuity

Images from: Medical Radiography and Photography, Kodak 62:2 1986

Breast Compression

Area compression

- Reduces breast thickness
 - Iowers radiation dose
 - spreads breast tissues apart
 - produces a more uniform thickness
 - allows use of narrow latitude, high contrast film
- Reduces motion and geometric unsharpness
- Reduces x-ray scatter and beam hardening, thus improving contrast

Area compression

Full compression paddle: Uniform density across image.

Spot compression

Spot compression paddle: Better compression over small area

Clear polycarbonate paddle, ~0.3 cm thick

Flat, parallel geometry Deflection < 1 cm

Spot paddle decreases tissue thickness

 \downarrow superimposition of tissues

Slide courtesy of J.A. Seibert

Lorad F.A.S.T. paddle (Fully Automatic Selfadjusting Tilt) Tilts in the A-P axis.

Siemens high and low edge paddles. Flex² paddle tilts in both A-P & lateral directions

Slide courtesy D. Jacobson

Biphasic Compression Paddle

Breast biphasic compression (22.5° angled paddle, followed by progressive angle reduction.

With permission: Breast Biphasic Compression versus Standard Monophasic Compression in X-ray Mammography, Sardanelli, F. et al. Radiology 2000;217:576-580

Slide courtesy D. Jacobson

Anti-scatter Grids

1978

 Philips introduces the Diagnost-U with a moving grid

1984

 Leibel-Flarsheim introduces fine-line stationary grid

Images from: Medical Radiography and Photography, Kodak 62:2 1986 No grid 26 kVp

With grid 28 kVp

Scatter Severely Degrades Contrast

- Scatter to Primary Ratio
 Field Diameter
 Breast Thickness
 At a S/P ratio of 0.5 contrast is reduced by ~ 35%
 Anti-scatter gride are
- Anti-scatter grids are necessary

Grids

Linear grid

- Ratio: 5:1
- Frequency > 30 l/cm
- Wood, paper or carbon fiber inter-space material
- Moved ~20 lines for blurring
- Cellular grid
 - 15 cells / cm
 - Air inter-space
 - Moved multiple of hole spacing

Figure from: http://www.hologic.com/oem/pdf/R-BI-016_Fund-Dig%20Mammo.pdf

% Contrast Improvement High Transmission Cellular Grid - HTCG

Adapted from: http://www.hologic.com/oem/pdf/R-BI-016_Fund-Dig%20Mammo.pdf

Automatic Exposure Control

Automatic Exposure Control

• AEC sensor is located *underneath* the cassette

- typical screen exposure is 5 to 10 mR
- variable sensor position
- should be under densest tissue

GE Instrumentarium Vector Point

GE Instrumentarium Diamond Autopoint

Automatic Exposure Control

AEC sensor is located *underneath* the cassette

- typical screen exposure is 5 to 10 mR
- variable sensor position
- should be under densest tissue
- integrated signal is used to terminate the exposure

GE Instrumentarium Diamond Autopoint

AEC Modes of Operation

- Auto Time
 - kVp, target/filter chosen by operator

Auto kVp

- kVp chosen on basis of breast thickness
- Full Automatic
 - kVp, target/filter chosen by unit
- Siemens Opdose
 - Breast thickness used to suggest kVp and target/ filter combination
- GE Instrumentarium
 - kVp adjusted during exposure to achieve exposure time of ~2 seconds
- GE DMR
 - Attenuation (100 ms) and breast thickness are used to select kVp and target/filter combination
 - Three algorithms STD, DOSE and CNT

Mammographic Recording Systems
1960's non-screen industrial film

hand processing – 5 minutes

1970 Kodak RP/M non-screen film

90 second processing
entrance skin exposure, 3 – 10 R

Mammography Recording Systems 1950's non-screen industrial film 1970 Kodak RP/M non-screen film 90 second processing entrance skin exposure, 3 – 10 R 1971 Xeroradiography blue powder entrance skin exposure, 2 – 4 R

Mammography Recording Systems

1972 DuPont Lo-Dose screen-film
 calcium tungstate screen – no cassette
 black polyethylene vacuum bag
 entrance skin exposure, 1 – 1.5 R

Step 2.

POSITION IN BA

Step 3 ACTUAT TO VAC

Step 5. Position bag for exposure

- Exposures should be 28-32 kVp
- Standard mammographic positioning is suggested

Step 4. REMOVE

> Step 6. Open bag

Slides courtesy J. Milbrath

Mammography Recording Systems

1972 DuPont Lo-Dose screen-film calcium tungstate screen black polyethylene vacuum bag entrance skin exposure, 1 – 1.5 R 1976 DuPont Lo-Dose II rare-earth screen, cassette 1976 Kodak MinR rare-earth screen, cassette

Mammography Recording Systems

- 1983 Kodak Min- R screen-film system
 - gadolinium oxysulfide with orthochromatic film
 (other rare earth phosphors developed)
 - significant reduction in dose compared to nonscreen film
 - current films employ cubic grains

3-D Tabular Cubic

Single-sided emulsion film with a single screen underneath the film

- x-ray absorption higher on entrance side of the screen
- light emission is also highest on entrance side
- light diffusion in screen is minimized which reduces blurring

Typical Screen: Gd₂O₂S:Tb
main emission at 545 nm

film spectral sensitivity is matched

conversion efficiency ~ 15 %
x-ray absorption of 40 to 60%
MTF ~ 10% up to 15 lp/mm

Mammography Recording Systems

2003 Kodak Min-R EV

- Dual emulsion film used with a single screen
- Asymmetric emulsion design optimizes image quality from toe to shoulder of the sensitometric curve

Film Exposure and Processing

Latent image formation

- Light converts AgBr complex into silver ion + electron, creates a sensitivity speck
- Processing (four steps)
 - Developer
 - Chemical amplification ~ 5 x 10 ⁹
 - Fixer stops development
 - Washing
 - Drying

For details see: "The Basics of Film Processing in Medical Imaging" by Art Haus and Susan Jaskulski

Technologist Daily Processor Control

MQSA requires a processor performance test on each day that examinations are performed before any clinical films are processed

Density Difference

+/- 0.15 DU

Mid-density

+/- 0.15 DU

Base + Fog

+/- 0.03 DU

Processing Chemistry

MQSA regulations require a facility to use chemical solutions that are capable of developing the films in a manner equivalent to film manufacturer's specifications.

ACR Film Viewing Recommendations

View box luminance ~ 3000 cd/m²
Masking is essential to preserve visibility of low contrast objects
Ambient light intensity < ~20 lux
High intensity spot light should be available
Magnifying glass should be available

Masking Is Essential

Low Contrast Test Object on Viewer

Un-Masked and Masked Test Object

Mean Glandular Dose (MGD) MGD (mrad) = $D_{gN}x$ ESE (R)

D_{gN} is the factor used to convert entrance skin exposure to mean glandular dose in mrad or mGy
 determined by MC simulations and measurements
 D_{gN} depends on
 hvl, kVp, target, filter, breast composition and thickness
 Maximum allowed MGD for 4.2 cm, 50% adipose, 50% gland is 300 mrad or 3 mGy

D_{gN} Conversion (mrad / R) Mo target / Mo filter

4.5 cm breast: 50% glandular and 50% adipose breast tissue composition kVp

HVL (mm)	25	26	27	28	29	30	31	32
0.25	122							
0.26	126	128						
0.27	130	132	134					
0.28	134	136	138	139				
0.29	139	141	142	143	144			
0.30	143	145	146	147	148	149		
0.31	147	149	150	151	152	153	154	
0.32	151	153	154	155	156	158	159	160
0.33	155	157	158	159	160	162	163	164
0.34	160	161	162	163	164	166	167	168
0.35	164	166	167	168	169	170	171	172
0.36	168	170	171	172	173	174	175	176
0.37		174	175	176	177	178	178	179
0.38			179	180	181	182	182	183
0.39				184	185	186	186	187
0.40					189	190	191	192

ACR QC Manual 1999

Short-cut to Find MGD for MAP Phantom

MGD (mrad) = $0.5 \times hvl (mm) \times ESE (mR)$

Short-cut gives MGD within 2-3% for all target and filters.

D. Jacobson, Radiographic exposure calculator and mammographic dose calculator, Radiology 1992; 182: 578.

The End