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Abstract— Despite the binomial distribution (BD) and its 

limiting case, the Poisson distribution (PD) are probabilistic 

functions (PFs), they are mathematical derivations, where little 

probabilistic foundations were used in their formulations. These 

PFs have been overestimated and irrationally used in many 

scientific/technical fields. 

This work discussed three practical examples. One of them 

shows the expected values for “k” trails of a stochastic process 

characterized with a success probability “p”. Another examples  

are related with use of the BD as an excellent-mathematical 

generator of NTCP(xi) discrete probabilistic distributions; and 

with use of BD/Poisson distribution (PD) in the nuclear 

medicine for evaluating probabilities of measurements of a 

long-lived radioactive sample as a random variable N, as well as 

use of cumulative distribution functions for evaluating 

probabilities of some interval of N, and for determining with 

iterative calculations confidence intervals.  The BD(x;2,p) terms 

are probabilistically obtained; as well as a MatLab application 

was developed, which  generates random discrete probabilistic 

distributions based on probabilistic foundations. The irrational 

use of the PD in the derivation of the Poisson-based TCP model 

has been described. 

This work will help medical physics community to 

understand: 1) How the BD and PD were derived; 2)What really 

the BD and PD are; 3) How one should use the BD; 4) The PD is 

not a new PF, but the own BD with simplifications valid for 

some values of BD parameters, and changes of variable and 

parameters; and 5) Given the essential condition for a PF is not 

satisfied in the PD for some values of its parameter, also we can 

say that: The PD is not a PF. For these reasons, the PD(x;µ) 

could be replaced with the BD(x;Xmax,p), where Xmax is the 

possible outcomes of a stochastic process, Xmax=n and p= 

µ/Xmax.  
 

Keywords—Binomial distribution, Poisson distribution, 

Computational simulation, TCP, Probability 

 

I. INTRODUCTION  

The SMp(x) of [1] is a probabilistic function (PF) that lets 

us generating probability density functions and   discrete 

probabilistic distributions (DPDs). Although SMp(x) has six 

parameters, up to five of them are independent given its 

condition of PF.   

.  

The BD and PD are analytical functions that generate 

DPDs. These functions have mathematical origins, and have 

been over-estimated in their applications. Besides, they have 

been irrationally used in the ionizing radiation field for 

deriving the Poisson-based tumor control probability (TCP) 

model and describing the interactions of ionizing radiation 

with living tissues.  

Despite the associated elaboration of a computational 

application is one of our objectives; in this study there are 

others more important purposes, such as   

 

1- To show the probabilistic way of obtaining the 

BD(x;2,p) terms.  

 

2- To show the irrational use of the PD in the derivation 

of the Poisson-based TCP model. 

 

3- To show the PD is not a new probabilistic function, nor 

its parameter is a new one. PD is the own BD(k;n,p) with 

some mathematical simplifications valid only for some 

values of parameters n and p, and change of the BD variable 

k by x, as well its parameters n and p  by λ or µ as the product 

of them; i.e. λ=µ=n*p. For these reasons, the PD(x;µ) should 

be replaced with the BD in the form BD(x;Xmax,p), where 

Xmax is the possible outcomes of a stochastic process, 

Xmax=n and p= µ/Xmax.  
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4- To establish the BD(x;Xmax,p), SMp(x;Xmax,p) and 

SMp(x;Xmax) simulator as ways of obtaining DPDs. 

 

We hope the student/teacher/researcher communities will 

understand that BD is only an excellent- mathematical 

generator of DPDs, and PD is not a new probabilistic 

function, but the own BD, as well as λ and µ are not new 

parameters, but the product of BD ones; i.e. λ=µ=n*p. This 

understanding could avoid the overestimated, confused and 

irrational use of BD and PD in different fields.   

 

It is very essential to understand that if a stochastic process 

has a success probability p, p=K/N (K: Success events, and 

N: Total of events) and for n trials, the ratio k/n (k: Expected 

success events) is equal to or approximately equal to p.  This 

understanding will let you realizing of the little probabilistic 

and no practical importance of the BD(k;n,p). 

 

I.1 The binomial distribution  

The binomial expression of the Eq. (2) mathematically 

provides a sum of  (𝑛
𝑘

) of 𝑝𝑘(1 − 𝑝)𝑛−𝑘  as result of 

replacing a=p and b=1-p in the Eq. (1), the binomial 

theorem, with which one can determine the series of sums for 

the power n of a sum of two number a and b. Here p is a 

parameter < 1 and k=0,1,2,……n   

(𝑎 + 𝑏)𝑛 = (𝑛
0
)𝑎0𝑏𝑛−0 + (𝑛

1
)𝑎1𝑏𝑛−1 + ⋯ + (𝑛

𝑛
)𝑎𝑛𝑏𝑛−𝑛                (1)   

 

  

                                      

(𝑝 + (1 − 𝑝))𝑛 = 1 = (𝑛
0
)𝑝0(1 − 𝑝)𝑛−0 + (𝑛

1
)𝑝1(1 − 𝑝)𝑛−1+. . . … +

(𝑛
𝑛

)𝑝𝑛(1 − 𝑝)𝑛−𝑛                                                                     (2) 

 

(𝑛
𝑘

) =
𝑛!

𝑘!(𝑛−𝑘)!
                                                                      (3) 

 

The BD generates DPDs in the interval [0;n] varying its 

parameter p, where n is the other mathematical parameter.  

The computational simulations of the BD generates a DPD 

of stochastic processes with three or more possible outcomes 

from many (>10000) simulations of a stochastic process with 

success probability p and n trials. This was computationally 

demonstrated with the simulator of [2].  

I.2 The Poisson distribution. 

Siméon Denis Poisson, the creator of the PD had two 

important merits: 1) Mathematically simplifying the BD 

expression; and 2) Replacing the BD variable k by x in his 

simplified expression; where they left to mention k as success 

trails and p as success probability, but variable x and 

parameter µ as the value of x with the maximum probability. 

µ is not a new parameter, but the product of the two BD 

parameters; i.e. λ=µ=n*p. 

The PD was determined as follows 

lim
𝑛→∞

𝐵𝐷(𝑘; 𝑛, 𝑝) = 𝑃𝐷(𝑘; 𝜆) =
𝑒−𝜆𝜆𝑘

𝑘!
                                        (4) 

 

and employed for calculating probabilities of a random 

discrete variable X as    

 

𝑃𝐷(𝑥; 𝜇) =
𝑒−𝜇𝜇𝑥

𝑥!
                                                                             (5) 

 

I.3 The irrational use of the BD and PD in the ionizing 

radiation field  

In the ionizing radiation field, the BD and PD are 

irrationally used for deriving some probabilistic models and 

concepts.  

The use of Poisson statistics (PS) in TCP models has led 

to a negative-exponential expression in [3] and [4]. Also, the 

cell survival (S) has been described with the PS in these same 

references. The ways of describing S with the PS is 

probabilistically very complicated. Really, S is a 

probabilistic complement of the cell kill (K); i.e. K=1-S, and 

K can be modelled with the SMp(x) function of [1] as a 

stochastic effect type SMp P1.  

For the formulation of TCP model of [3], the Eq. (5) was 

used and transformed as 

𝑃𝐷 = 𝑒−𝜇                                                                         (6) 

 

that is result of considering the Poisson independent variable 

x as number of tumor clonogens, and equal to zero.  

As expressed in [3]: “The Poisson probability of there 

being no surviving cells in a population of like tumors after a 

fractionated treatment is given by”  

𝑇𝐶𝑃 = 𝑒−𝑁𝑆                                                                      (7)                                                                                     
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𝑁𝑆  = 𝑁0𝑆                                                                                            (8)  

                                               

where N0: number initial of tumor clonogens.  

       S: The cell survival probability, which is modeled 

with the well-known linear-quadratic cell survival model for 

a fractionated radiation treatment. 

II. RESULTS 

II.1 Probabilistic determination of the BD(x;2,p) terms.   

The BD(2;2,p) term associated to the probability Pk=2 is 

defined as  

𝑃𝑘=2 =  𝐸𝑉2/𝑟𝑡𝑟𝑖𝑎𝑙𝑠                                                                                (9)                                                                                 

where EV2 is equal or approximately equal to the number of 

trials with two successes in two trials; rtrials: number of 

times is repeated the two trials.  

𝐾1 = 𝑝 ∗ 𝑟𝑡𝑟𝑖𝑎𝑙𝑠                                                                                     (10)                                                                    

  𝐾2 = 𝑝 ∗ 𝑟𝑡𝑟𝑖𝑎𝑙𝑠                                                                  (11)                                                                          

where K1: Equal or approximately equal to amount of 

successes in the first trials; and K2: The same to K1 in the 

second trials.  

For many rtrials (>10000) K1≅K2, and p*K2 is equal or 

approximately equal to the number of times that two trials 

will produce two successes; i.e. p*K2=EV2, substituting EV2 

in the Eq. (9), and K2 from the Eq. (11), we obtain that 

𝑃𝑘=2 =
𝑝 ∗ 𝑝 ∗ 𝑟𝑡𝑟𝑖𝑎𝑙𝑠

𝑟𝑡𝑟𝑖𝑎𝑙𝑠
⁄                                                   (12)                                                                    

𝑃𝑘=2 = 𝑝 ∗ 𝑝                                                                          (13)                                                                 

𝑃𝑘=2 = 𝑝2                                                                            (14)                                                                       

The BD(0;2,p) associated to probability Pk=0 is determined 

with a similar procedure employed in the term BD(2;2,p), but 

in this analysis the failures should be considered, instead of 

successes.  For these reasons,  

𝑃𝑘=0 = (1 − 𝑝)2                                                                    (15)                                                          

The BD(1;2,p) associated to probability Pk=1 is defined as   

𝑃𝑘=1 =  𝐸𝑉1/𝑟𝑡𝑟𝑖𝑎𝑙𝑠                                                                            (16)                                          

where EV1 is equal or approximately equal to the number of 

trials with one success in two trials; rtrials: number of times 

is repeated the two trials.     

𝐾1 = 𝑝 ∗ 𝑟𝑡𝑟𝑖𝑎𝑙𝑠                                                                   (17)                                                                        

𝐾2 = 𝑝 ∗ 𝑟𝑡𝑟𝑖𝑎𝑙𝑠                                                                                  (18)                              

where  K1 is equal or approximately equal to amount of 

successes in the first trials; and K2: The same to K1 in the 

second trials.  

For many rtrials (>10000) K1≅K2, and (1-p)*K2=K’’ is  

equal or approximately equal to the number of successes in 

the second trial that have a failure in first trial,  (1-p)*K1=K’ 

is  equal or approximately equal to the number of successes 

in first trials that have a failure in second trials,  and 

EV1=K’+K’’,  and substituting K1 in K’, and K2 in K’’ of the 

Eq. (17) and Eq. (18) respectively, then   

𝐾′ = (1 − 𝑝) ∗ 𝑝 ∗ 𝑟𝑡𝑟𝑖𝑎𝑙𝑠                                                        (19)                                                                                   

𝐾′′ = (1 − 𝑝) ∗ 𝑝 ∗ 𝑟𝑡𝑟𝑖𝑎𝑙𝑠                                                                    (20)                                                               

 Substituting EV1 in the Eq. (16),    

𝑃𝑘=1 =
𝐾′+𝐾′′

𝑟𝑡𝑟𝑖𝑎𝑙𝑠
                                                                        (21)                                                                        

Using the Eq. (19) and Eq. (20), 

𝑃𝑘=1 =
(1−𝑝)∗𝑝∗𝑟𝑡𝑟𝑖𝑎𝑙𝑠+(1−𝑝)∗𝑝∗𝑟𝑡𝑟𝑖𝑎𝑙𝑠

𝑟𝑡𝑟𝑖𝑎𝑙𝑠
                                            (22)                                                          

𝑃𝑘=1 = 2 ∗ (1 − 𝑝) ∗ 𝑝                                                             (23)                                                                         

II.2 Random generation of discrete probabilistic 

distributions  

II.2.1 Description of the codes 

 

This work has developed a MatLab computational tool, 

which generates random discrete probabilistic SMp(x;Xmax) 

distributions, where Xmax is number of possible cases. This 

application is available in the “GenDPD” project of 

https://gitlab.com/tfrometa. The generation of these 

distributions probabilistically satisfies that 

∑ 𝑆𝑀𝑝(𝑥𝑖; 𝑋𝑚𝑎𝑥) = 100% always. 

MEDICAL PHYSICS INTERNATIONAL Journal, vol.8, No.3, 2020

493



 

 

II.2.2 Reproducibility 

 

At the application, the input value (IV) Xmax appears in 

yellow color, while outcome of the sum of simulated 

probabilities appears in green. One should press the “Enter” 

key placed at Xmax field for introducing its value into the 

application. The Figure 1 shows a generated discrete 

probabilistic SMp (x;5) distribution. 

 

 

Figure 1. It is shown that a random-generated discrete probabilistic 

distribution and its sum as  ∑ SMp(xi; 5) = 100%5
i=0 . 

The steps for the execution of this module are: a) 

Introduce parameters Xmax; and b) Press the “Generate” 

button  

 

III. DISCUSSION  

III.1 The binomial and Poisson distributions  

Really, PD is a mathematical simplification of the BD. 

While PD has simplified the BD expression, the 

methodologies employed in the “Binomial” and “Poisson” 

modules of [2], are very similar. For these reasons, in the new 

computational simulator of the “SimPD1” project of 

https://gitlab.com/tfrometa, the “Poisson” module has been 

eliminated, and the “Binomial” module has been renamed as 

“Binomial-Poisson”, which generates probabilistic 

SMp(x;Xmax,p) distributions,  where p=µ/Xmax and 

Xmax=n. The Figure 2 and Figure 3 are results obtained by 

the computational simulator developed in [2] and one of the 

two applications developed in this study; and show the whole 

coincidence of the simulated SMp(x;Xmax,p)  distributions 

with the BD.  

 

Figure 2. It is shown that Poisson generates a proper for describing 

this discrete distribution, since ∑ 𝑃𝐷(𝑥𝑖) ≈ 100%8
𝑖=0 .  

While the BD results are obtained with mathematical 

procedures, the simulated SMp distributions are obtained by 

means many simulations (>10000) of a stochastic process 

with a success probability p and repeated rtrials its n trials. 

 

The BD and SMp distributions are always DPDs in the 

interval [0;Xmax], however for some values of  parameters n 

and p, as the Figure 2 shows, the PD is good approximation 

of the BD and generates DPDs,  but for others,  as the Figure 

3 illustrates, PD is not good approximation of the BD and 

does not generate DPDs because of this PD does not satisfy 

the essential condition for the probabilistic functions, where 

sum(PD(xi)) must be equal to 100%.  

 

Figure 3. It is shown that this PD does not generate a DPD in this interval, 

and is not good approximation of the BD. There a difference of 11.4% in the 

sum of the P(xi); i.e.  ∑ PD(xi) ≠ 100%8
i=0 .  

Although the BD expression coincidently is a DPD of k 

successes of many repeated (>10000) n trials of a stochastic 
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process (SP) with success probability p, really when a SP is 

characterized with a success probability p, it implies that:  

a) p was obtained as p=K/N, where K is the number of 

success results and N is the total of events. 

b) Each trial has a success probability p. 

c) In n trials, the ratio of k successes and n trials should be 

equal or approximately equal to p; i.e. 
𝑘

𝑛
≅ 𝑝 = 𝐾/𝑁. For 

example: When a homogeneous population of 100 patients 

are treated with a same radiation oncology treatment, and 60 

of them were cured; we say this treatment has a tumor control 

probability (TCP) equal to 60%; and if n new patients are 

treated later, the relationship between n and expected patients 

cured (k) will be 

 

New 

patients (n)  
5 10 25 40 70 80 100 

  Expected 

patients 

cured (k) 

3 6 13 24 42 48 60 

 

d) There is no need of creating a second and new 

probability P(k;n,p) dependent of p, like the BD(k;n,p). 

III.2 The Poisson distribution in ionizing radiation field  

The Poisson-based TCP model is wide employed in the 

field of the radiation treatments, how is shown in [5] and [6]. 

The criteria of “no surviving cells” or “100% killed cells” 

are proper for determining TCP. In fact, this condition was 

used in the first radiobiological simulator of [7]. 

Although the “no surviving cells” is a good criterion 

associated to TCP, it is not correct to associate the Poisson 

independent variable x with the number of tumor clonogens, 

and the Eq. (5) with TCP.  

The BD can be used for describing or assuming NTCPi 

i=0:n (n: number of complications) that involves NTCPs 

(Normal tissue complication probabilities)  and NTCP0 

(Normal tissue non-complication probability). NTCP0 is a 

new probabilistic metric associated to evaluations of safety 

in whatever risky activity, like radiation oncology therapy. 

NTCP0=NTCP0 and is probabilistic complement of the total 

NTCP (TNTCP); NTCP0=100%-TNTCP, and 𝑇𝑁𝑇𝐶𝑃 =

∑ 𝑁𝑇𝐶𝑃𝑖
𝑛
𝑖=1 .  TNTCP is a new probabilistic metric too. 

NTCP0 is associated to the safety, and TNTCP is associated 

to toxicity, how is described in [8].                                                           

III.3 Teaching/learning importance of this work.  

This work provides the following teaching lessons:  

 

a)- The BD and PD have been overestimated and 

irrationally used in different fields, like the ionizing radiation 

one. 

 

b)- The BD is an excellent-mathematical generator of DPDs, 

and coincidentally is associated to the probabilities 

P(k;n,p) only for many repeated n trials (> 10000). 

 

c)- The PD(x;µ) is not a new probabilistic function, but the 

own BD with a change of variables and simplifications valid 

for determined values of the BD parameters (n and p); and its 

parameters (λ and µ) are only the product of n and p. A simple 

change of variable k by x does not generate a new function. 

For these reasons, the PD(x; µ) should be replaced with the 

BD(x;Xmax,p). Even, given the essential condition for a PF 

is not satisfied in the PD for some values of its parameter (See 

Figure 3), also we can say that: The PD is not a PF.  

 

d)- The probabilistic generation of the BD(x;2,p) terms. 

 

e)- The irrational use of the PD in the derivation of the 

Poisson-based TCP model.  

 

f)- Additional to mathematical way of generating DPDs, 

there are other methods, such as the probabilistic and 

computational.  

g)- Unnecessary use of the P(k;n,p) probabilities, like the 

BD, for stochastic processes are characterized with a success 

probability p. In the Section III.1, with a practical example, 

we show what means whether a stochastic process is 

characterized with a success probability p. For this reason, 

the BD should be used as BD(x;Xmax,p), where p is simply 

a mathematical parameter. For choosing the binomial 

parameter p, one should take into account that: 1) if p << 0.5, 

the BD(0;Xmax,p) is the event with maximum probability 

(EwMP) ; 2) if p < 0.5, one of the BD(x≠0;Xmax;p) is the 

EwMP, and BD(0;Xmax,p)>>0%; if p≈0.5, one of the 

BD(x≠0;Xmax,p)  is the EwMP, and BD(0;Xmax,p)  >0%; 

and 3) if p>0.5, one of the BD(x≠0;Xmax,p)   is the EwMP, 

and BD(0;Xmax,p)≈0%.  
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h)- While mathematically BD does not show, our 

applications show that BD is associated to k success events 

of n trials of a many times (>10000) simulated stochastic 

process with a success probability p.  

 

All new knowledges have been validated with theoretical 

demonstrations or with computational tools.  

 

These new knowledges could avoid the overestimated, 

confused and irrational use of the BD and PD by the 

student/teacher/researcher communities in different 

fields. Take into account that the BD and PD are elemental 

topics in many teaching materials of the statistics, and are 

probabilistic functions that have been well-established for 

more than 200 years.  

 

Our work shows that there are three ways of obtaining 

DPDs: mathematical, probabilistic and computational, used 

respectively in the BD(x;Xmax,p), SMp(x) function, and 

SMp simulators.  Although these ways are different, they 

generate similar DPDs, which can be used for describing or 

assuming discrete stochastic variables with three or more 

possible outcomes.  

 

When a process is deterministic, this will occur always or 

will not occur never. While if a process is stochastic, the 

expected ratio k/n of the number of success events (k) and 

total of them (n) will be equal or approximately equal to the 

success probability p, which is generally determined as 

p=K/N; where K: success observations, and N: Total of them. 

For these reasons, the BD(k;n,p) has little probabilistic and 

does not have practical importance. The BD is a 

mathematical exercise that is result of evaluating respectively 

the variables a and b of the binomial theorem by p and 1-p; 

and its expression is a sum of the “n+1” elements of a DPD.  

 

The Figure 4 illustrates a hypothetical example of a 

NTCP(xi) DPD= BD(x;4,0.3) for describing or assuming the 

probabilities of late complications discussed in [9]-[10], and 

associated to a chest radiation treatment involving 

complications of two OARs: heart and lung. The 

NTCP0=NTCP(0)=24%. This value increases if prescribed 

dose (D=nd; n: Number of fractions, and d: Dose per 

fraction) decreases, and vice versa, as result of variations of 

d for a treatment with a constant n; or variations of n for a 

constant d. The NTCP0 value increases if D decreases, and 

vice versa, how is shown by the four arrows on the right-side 

of the y-axis of the Figure 4. 

 

 

 
Figure 4. Hypothetical example of a NTCPi or NTCP(x) DPD equal 

to BD(x;4,0.3) for describing or assuming the probabilities of late 

complications associated to a chest radiation treatment. Abbreviations: 

D: Prescribed dose; NTC0 No complication; NTC1 Congestion heart 

failure; NTC2 Ischemia; NTC3 Coronary artery disease; NTC4 

Pneumonitis. The NTCP0=NTCP0=24% is represented by a x.  

Whatever radiation therapy or radiation activity with 

similar circumstances has its own NTCP(xi) DPD caused by 

the affected OARs and others have physiological 

relationships with these.  

 

Probabilistically one can say for a stochastic process (SP) 

with only one outcome; for example, if a radiation treatment 

has a TCP=60%, that there is not tumor control 100%-

60%=40%; while one can say for a SP with more than one 

outcome, like late normal tissue complications (NTC), that 

this SP have a  NTCP(xi) DPD, where NTCP0, i.e. the 

probability for non-complications is NTCP(0). 

 

It is very important to know how the BD and PD were 

derived for understating how the BD should be used. These 

functions are not only mathematical, but they were created as 

probabilistic functions, which must satisfy the essential 

condition of a DPD: ∑ BD(xi)=100% and ∑ PD(xi)=100%. 

The PD is a discrete function, how is shown by its 

denominator called factorial that is defined only for 

nonnegative integer values. 

 

Another example taken from [11] that shows the use of 

BD and PD is the following: “Suppose that a long-lived 

radioactive sample is counted repeatedly under supposedly 

identical conditions with a properly operating counting 

system. Because the disintegration rate of the radioactive 

sample undergoes random variations from one moment to the 

next, the numbers of counts recorded in successive 

measurements (N1, N2, N3, etc.) are not the same. Given that 

different results are obtained from one measurement to the 

next, one might question if a “true value” for the 

measurement actually exists. One possible solution is to 
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make a large number of measurements and use the average 

as an estimate for the “true value.””. 

The Figure 5 is the graphical representation of [11] for 

showing the use of the PD; but its DPD can be described with 

BD(N;20,0.5) or PD(N;10). These DPDs let us evaluating 

probabilities of each value of N; and their cumulative 

distribution functions allow to determine probabilities of 

intervals, like m±∆N as  

𝑃(𝑁 > 𝑚 − ∆𝑁 &𝑁 < 𝑚 + ∆𝑁) = ∑ 𝐵𝐷(𝑁; 20,0.5)𝑚+∆𝑁
𝑚−∆𝑁                   (24) 

or  

𝑃(𝑁 > 𝑚 − ∆𝑁 &𝑁 < 𝑚 + ∆𝑁) = ∑ 𝑃𝐷(𝑁; 10)𝑚+∆𝑁
𝑚−∆𝑁                         (25)  

 

Figure 5. Graphical representation of [11] for showing the use of the 

Poisson distribution with expression PD(N;10). 

The probability of N equal to the mean (m=10) is equal to 

BD(10;20,0.5)=12.51%; and P(N>6 & N<14); i.e. ∆N=4, is 

equal to 85%. Another important value of a DPD is the most 

likelihood (ML). In our case, as a symmetric function m=ML.    

 

Using interactive calculations one can determine a 

confidence interval (CI). For example, CI=95%, ∆N≈5.  

IV. CONCLUSION 

This study has let probabilistically obtaining the 

BD(x;2,p) terms; developing a computational generator of 

random DPDs based on probabilistic foundations, and 

showing the irrational use of PD in the derivation of the 

Poisson-based TCP model.  

The BD and generated SMp distributions could be used 

for describing or assuming DPDs, like  NTCPi (i=0:nc, nc: 

number of complications) in the radiation oncology 

therapies, which includes NTCP0 and NTCPs. NTCP0: 

Normal tissue non-complication probability; and NTCPs: 

Normal tissue complication probabilities.  

In the way that BD was formulated, one cannot say that its 

DPD is associated to probabilities of k successes n trails of a 

stochastic process with a success probability p. Only with 

methods, like computational simulations this association is 

demonstrated.  Also, based on the BD formulation, one 

should not treat to p as a probabilistic parameter, but as 

mathematical one, where p<1.  In the computational tools, p 

is considered as a success probability.   

We have probabilistically derived the BD(x;2,p) terms, 

and computationally demonstrated that BD is DPD of k 

success events of n trails (>10000) of a stochastic process 

with success probability p. 

 Given that: a) The current high computational and 

technological degree is a situation that lets going without of 

a simplification of the BD expression; b) Contrary to the BD, 

PD is not always an acceptable DPD for an interval [0;Xmax] 

nor a good approximation of the BD; c) Very simple 

relationships among the parameters n, p and µ; and d) the 

BD(x;Xmax,p) can play a better role than PD(x;µ), where is 

easily determined p from µ as p=µ/Xmax; we propose the 

following: 

1- Using as generators of DPDs to:  

• As a mathematical method, the BD as 

BD(x;Xmax,p); i.e. the BD with change of variable 

k by x, and parameter n by Xmax. 

• As a probabilistic method, the SMp(x) function  

• As a computational methods, the SMp simulator 

that generates the SMp(x;Xmax,p) distributions for 

many repeated n trials (> 10000), and  the SMp 

simulator that generates random SMp(x;Xmax) 

distributions  

2- Analyzing the possibility of replacing the PD(x;µ) with 

the BD(x;Xmax,p), where Xmax=n and p=µ/Xmax.  Due to 

all previously said, the use of PD will become unnecessary.  

The dissemination of the new and elemental knowledges 

provided by our study will lead change of statistics courses 

involving the BD and PD topics, and will let the students a 

better understanding of BD and PD, as well as they will be 

provided of other tools for generating DPDs, such as 
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probabilistic and computational, different to the 

mathematical employed in the BD.  
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